Source code for fooof.sim.gen

"""Functions for generating model components and simulated power spectra."""

import numpy as np

from fooof.core.utils import check_iter, check_flat
from fooof.core.funcs import get_ap_func, get_pe_func, infer_ap_func

from fooof.sim.params import collect_sim_params
from fooof.sim.transform import rotate_spectrum, compute_rotation_offset

###################################################################################################
###################################################################################################

[docs]def gen_freqs(freq_range, freq_res): """Generate a frequency vector. Parameters ---------- freq_range : list of [float, float] Frequency range to create frequencies across, as [f_low, f_high], inclusive. freq_res : float Frequency resolution of desired frequency vector. Returns ------- freqs : 1d array Frequency values, in linear spacing. Examples -------- Generate a vector of frequency values from 1 to 50: >>> freqs = gen_freqs([1, 50], freq_res=0.5) """ # The end value has something added to it, to make sure the last value is included # It adds a fraction to not accidentally include points beyond range # due to rounding / or uneven division of the freq_res into range to simulate freqs = np.arange(freq_range[0], freq_range[1] + (0.5 * freq_res), freq_res) return freqs
[docs]def gen_power_spectrum(freq_range, aperiodic_params, periodic_params, nlv=0.005, freq_res=0.5, f_rotation=None, return_params=False): """Generate a simulated power spectrum. Parameters ---------- freq_range : list of [float, float] Frequency range to simulate power spectrum across, as [f_low, f_high], inclusive. aperiodic_params : list of float Parameters to create the aperiodic component of a power spectrum. Length should be 2 or 3 (see note). periodic_params : list of float or list of list of float Parameters to create the periodic component of a power spectrum. Total length of n_peaks * 3 (see note). nlv : float, optional, default: 0.005 Noise level to add to generated power spectrum. freq_res : float, optional, default: 0.5 Frequency resolution for the simulated power spectrum. f_rotation : float, optional Frequency value, in Hz, to rotate around. Should only be set if spectrum is to be rotated. return_params : bool, optional, default: False Whether to return the parameters for the simulated spectrum. Returns ------- freqs : 1d array Frequency values, in linear spacing. powers : 1d array Power values, in linear spacing. sim_params : SimParams Definition of parameters used to create the spectrum. Only returned if `return_params` is True. Notes ----- Aperiodic Parameters: - The function for the aperiodic process to use is inferred from the provided parameters. - If length of 2, the 'fixed' aperiodic mode is used, if length of 3, 'knee' is used. Periodic Parameters: - The periodic component is comprised of a set of 'peaks', each of which is described as: * Mean (Center Frequency), height (Power), and standard deviation (Bandwidth). * Make sure any center frequencies you request are within the simulated frequency range. - The total number of parameters that need to be specified is number of peaks * 3 * These can be specified in as all together in a flat list (ex: [10, 1, 1, 20, 0.5, 1]) * They can also be grouped into a list of lists (ex: [[10, 1, 1], [20, 0.5, 1]]) Rotating Power Spectra: - You can optionally specify a rotation frequency, such that power spectra will be simulated and rotated around that point to the specified aperiodic exponent. * This can be used so that any power spectra simulated with the same 'f_rotation' will relate to each other by having the specified rotation point. - Note that rotating power spectra changes the offset. * If you specify an offset value to simulate as well as 'f_rotation', the returned spectrum will NOT have the requested offset. It instead will have the offset value required to create the requested aperiodic exponent with the requested rotation point. * If you return SimParams, the recorded offset will be the calculated offset of the data post rotation, and not the entered value. - You cannot rotate power spectra simulated with a knee. * The procedure we use to rotate does not support spectra with a knee, and so setting 'f_rotation' with a knee will lead to an error. Examples -------- Generate a power spectrum with a single peak, at 10 Hz: >>> freqs, powers = gen_power_spectrum([1, 50], [0, 2], [10, 0.5, 1]) Generate a power spectrum with alpha and beta peaks: >>> freqs, powers = gen_power_spectrum([1, 50], [0, 2], [[10, 0.5, 1], [20, 0.5, 1]]) Generate a power spectrum, that was rotated around a particular frequency point: >>> freqs, powers = gen_power_spectrum([1, 50], [None, 2], [10, 0.5, 1], f_rotation=15) """ freqs = gen_freqs(freq_range, freq_res) if f_rotation: powers = gen_rotated_power_vals(freqs, aperiodic_params, check_flat(periodic_params), nlv, f_rotation) # The rotation changes the offset, so recalculate it's value & update params new_offset = compute_rotation_offset(aperiodic_params[1], f_rotation) aperiodic_params = [new_offset, aperiodic_params[1]] else: powers = gen_power_vals(freqs, aperiodic_params, check_flat(periodic_params), nlv) if return_params: sim_params = collect_sim_params(aperiodic_params, periodic_params, nlv) return freqs, powers, sim_params else: return freqs, powers
[docs]def gen_group_power_spectra(n_spectra, freq_range, aperiodic_params, periodic_params, nlvs=0.005, freq_res=0.5, f_rotation=None, return_params=False): """Generate a group of simulated power spectra. Parameters ---------- n_spectra : int The number of power spectra to generate. freq_range : list of [float, float] Frequency range to simulate power spectra across, as [f_low, f_high], inclusive. aperiodic_params : list of float or generator Parameters for the aperiodic component of the power spectra. periodic_params : list of float or generator Parameters for the periodic component of the power spectra. Length of n_peaks * 3. nlvs : float or list of float or generator, optional, default: 0.005 Noise level to add to generated power spectrum. freq_res : float, optional, default: 0.5 Frequency resolution for the simulated power spectra. f_rotation : float, optional Frequency value, in Hz, to rotate around. Should only be set if spectra are to be rotated. return_params : bool, optional, default: False Whether to return the parameters for the simulated spectra. Returns ------- freqs : 1d array Frequency values, in linear spacing. powers : 2d array Matrix of power values, in linear spacing, as [n_power_spectra, n_freqs]. sim_params : list of SimParams Definitions of parameters used for each spectrum. Has length of n_spectra. Only returned if `return_params` is True. Notes ----- Parameters options can be: - A single set of parameters. If so, these same parameters are used for all spectra. - A list of parameters whose length is n_spectra. If so, each successive parameter set is such for each successive spectrum. - A generator object that returns parameters for a power spectrum. If so, each spectrum has parameters sampled from the generator. Aperiodic Parameters: - The function for the aperiodic process to use is inferred from the provided parameters. - If length of 2, the 'fixed' aperiodic mode is used, if length of 3, 'knee' is used. Periodic Parameters: - The periodic component is comprised of a set of 'peaks', each of which is described as: * Mean (Center Frequency), height (Power), and standard deviation (Bandwidth). * Make sure any center frequencies you request are within the simulated frequency range. Rotating Power Spectra: - You can optionally specify a rotation frequency, such that power spectra will be simulated and rotated around that point to the specified aperiodic exponent. * This can be used so that any power spectra simulated with the same 'f_rotation' will relate to each other by having the specified rotation point. - Note that rotating power spectra changes the offset. * If you specify an offset value to simulate as well as 'f_rotation', the returned spectrum will NOT have the requested offset. It instead will have the offset value required to create the requested aperiodic exponent with the requested rotation point. * If you return SimParams, the recorded offset will be the calculated offset of the data post rotation, and not the entered value. - You cannot rotate power spectra simulated with a knee. * The procedure we use to rotate does not support spectra with a knee, and so setting 'f_rotation' with a knee will lead to an error. Examples -------- Generate 2 power spectra using the same parameters: >>> freqs, powers = gen_group_power_spectra(2, [1, 50], [0, 2], [10, 0.5, 1]) Generate 10 power spectra, randomly sampling possible parameters: >>> from fooof.sim.params import param_sampler >>> ap_opts = param_sampler([[0, 1.0], [0, 1.5], [0, 2]]) >>> pe_opts = param_sampler([[], [10, 0.5, 1], [10, 0.5, 1, 20, 0.25, 1]]) >>> freqs, powers = gen_group_power_spectra(10, [1, 50], ap_opts, pe_opts) Generate 5 power spectra, rotated around 20 Hz: >>> ap_params = [[None, 1], [None, 1.25], [None, 1.5], [None, 1.75], [None, 2]] >>> pe_params = [10, 0.5, 1] >>> freqs, powers = gen_group_power_spectra(5, [1, 50], ap_params, pe_params, f_rotation=20) Generate power spectra stepping across exponent values, and return parameter values: >>> from fooof.sim.params import Stepper, param_iter >>> ap_params = param_iter([0, Stepper(1, 2, 0.25)]) >>> pe_params = [10, 0.5, 1] >>> freqs, powers, sps = gen_group_power_spectra(5, [1, 50], ap_params, pe_params, ... return_params=True) """ # Initialize things freqs = gen_freqs(freq_range, freq_res) powers = np.zeros([n_spectra, len(freqs)]) sim_params = [None] * n_spectra # Check if inputs are generators, if not, make them into repeat generators ap_params = check_iter(aperiodic_params, n_spectra) pe_params = check_iter(periodic_params, n_spectra) nlvs = check_iter(nlvs, n_spectra) f_rots = check_iter(f_rotation, n_spectra) # Simulate power spectra for ind, ap, pe, nlv, f_rot in zip(range(n_spectra), ap_params, pe_params, nlvs, f_rots): if f_rotation: powers[ind, :] = gen_rotated_power_vals(freqs, ap, check_flat(pe), nlv, f_rot) aperiodic_params = [compute_rotation_offset(ap[1], f_rot), ap[1]] else: powers[ind, :] = gen_power_vals(freqs, ap, check_flat(pe), nlv) sim_params[ind] = collect_sim_params(ap, pe, nlv) if return_params: return freqs, powers, sim_params else: return freqs, powers
def gen_aperiodic(freqs, aperiodic_params, aperiodic_mode=None): """Generate aperiodic values. Parameters ---------- freqs : 1d array Frequency vector to create aperiodic component for. aperiodic_params : list of float Parameters that define the aperiodic component. aperiodic_mode : {'fixed', 'knee'}, optional Which kind of aperiodic component to generate. If not provided, is inferred from the parameters. Returns ------- ap_vals : 1d array Aperiodic values, in log10 spacing. """ if not aperiodic_mode: aperiodic_mode = infer_ap_func(aperiodic_params) ap_func = get_ap_func(aperiodic_mode) ap_vals = ap_func(freqs, *aperiodic_params) return ap_vals def gen_periodic(freqs, periodic_params, periodic_mode='gaussian'): """Generate periodic values. Parameters ---------- freqs : 1d array Frequency vector to create peak values for. periodic_params : list of float Parameters to create the periodic component. periodic_mode : {'gaussian'}, optional Which kind of periodic component to generate. Returns ------- peak_vals : 1d array Peak values, in log10 spacing. """ pe_func = get_pe_func(periodic_mode) pe_vals = pe_func(freqs, *periodic_params) return pe_vals def gen_noise(freqs, nlv): """Generate noise values for a simulated power spectrum. Parameters ---------- freqs : 1d array Frequency vector to create noise values for. nlv : float Noise level to generate. Returns ------- noise_vals : 1d vector Noise values. Notes ----- This approach generates noise as randomly distributed white noise. The 'level' of noise is controlled as the scale of the normal distribution. """ noise_vals = np.random.normal(0, nlv, len(freqs)) return noise_vals def gen_power_vals(freqs, aperiodic_params, periodic_params, nlv): """Generate power values for a simulated power spectrum. Parameters ---------- freqs : 1d array Frequency vector to create power values for. aperiodic_params : list of float Parameters to create the aperiodic component of the power spectrum. periodic_params : list of float Parameters to create the periodic component of the power spectrum. nlv : float Noise level to add to generated power spectrum. Returns ------- powers : 1d vector Power values, in linear spacing. Notes ----- This function should be used when simulating power spectra, as it: - Takes in input parameter definitions as lists, as used for simulating power spectra. - Returns the power spectrum in linear spacing, as is used for simulating power spectra. """ ap_vals = gen_aperiodic(freqs, aperiodic_params) pe_vals = gen_periodic(freqs, periodic_params) noise = gen_noise(freqs, nlv) powers = np.power(10, ap_vals + pe_vals + noise) return powers def gen_rotated_power_vals(freqs, aperiodic_params, periodic_params, nlv, f_rotation): """Generate power values for a simulated power spectrum, rotated around a given frequency. Parameters ---------- freqs : 1d array Frequency vector to create power values for. aperiodic_params : list of float Parameters to create the aperiodic component of the power spectrum. periodic_params : list of float Parameters to create the periodic component of the power spectrum. nlv : float Noise level to add to generated power spectrum. f_rotation : float Frequency value, in Hz, about which rotation is applied, at which power is unchanged. Returns ------- powers : 1d vector Power values, in linear spacing. Raises ------ ValueError If a rotation is requested on a power spectrum with a knee, as this is not supported. """ if len(aperiodic_params) == 3: raise ValueError('Cannot rotate power spectra generated with a knee.') powers = gen_power_vals(freqs, [0, 0], periodic_params, nlv) powers = rotate_spectrum(freqs, powers, aperiodic_params[1], f_rotation) return powers def gen_model(freqs, aperiodic_params, periodic_params, return_components=False): """Generate a power spectrum model for a given parameter definition. Parameters ---------- freqs : 1d array Frequency vector to create the model for. aperiodic_params : 1d array Parameters to create the aperiodic component of the modeled power spectrum. periodic_params : 2d array Parameters to create the periodic component of the modeled power spectrum. return_components : bool, optional, default: False Whether to also return the components of the model. Returns ------- full_model : 1d array The full power spectrum model, in log10 spacing. pe_fit : 1d array The periodic component of the model, containing the peaks. Only returned if `return_components` is True. ap_fit : 1d array The aperiodic component of the model. Only returned if `return_components` is True. Notes ----- This function should be used when computing model reconstructions, as it: - Takes in input parameter definitions as arrays, as used in FOOOF objects. - Returns the power spectrum in log10 spacing, as is used in FOOOF models. """ ap_fit = gen_aperiodic(freqs, aperiodic_params) pe_fit = gen_periodic(freqs, np.ndarray.flatten(periodic_params)) full_model = pe_fit + ap_fit if return_components: return full_model, pe_fit, ap_fit else: return full_model