"""Functions for generating model components and simulated power spectra."""
import numpy as np
from fooof.core.utils import check_iter, check_flat
from fooof.core.funcs import get_ap_func, get_pe_func, infer_ap_func
from fooof.sim.params import collect_sim_params
from fooof.sim.transform import rotate_spectrum, compute_rotation_offset
###################################################################################################
###################################################################################################
[docs]def gen_freqs(freq_range, freq_res):
    """Generate a frequency vector.
    Parameters
    ----------
    freq_range : list of [float, float]
        Frequency range to create frequencies across, as [f_low, f_high], inclusive.
    freq_res : float
        Frequency resolution of desired frequency vector.
    Returns
    -------
    freqs : 1d array
        Frequency values, in linear spacing.
    Examples
    --------
    Generate a vector of frequency values from 1 to 50:
    >>> freqs = gen_freqs([1, 50], freq_res=0.5)
    """
    # The end value has something added to it, to make sure the last value is included
    #   It adds a fraction to not accidentally include points beyond range
    #   due to rounding / or uneven division of the freq_res into range to simulate
    freqs = np.arange(freq_range[0], freq_range[1] + (0.5 * freq_res), freq_res)
    return freqs 
[docs]def gen_power_spectrum(freq_range, aperiodic_params, periodic_params, nlv=0.005,
                       freq_res=0.5, f_rotation=None, return_params=False):
    """Generate a simulated power spectrum.
    Parameters
    ----------
    freq_range : list of [float, float]
        Frequency range to simulate power spectrum across, as [f_low, f_high], inclusive.
    aperiodic_params : list of float
        Parameters to create the aperiodic component of a power spectrum.
        Length should be 2 or 3 (see note).
    periodic_params : list of float or list of list of float
        Parameters to create the periodic component of a power spectrum.
        Total length of n_peaks * 3 (see note).
    nlv : float, optional, default: 0.005
        Noise level to add to generated power spectrum.
    freq_res : float, optional, default: 0.5
        Frequency resolution for the simulated power spectrum.
    f_rotation : float, optional
        Frequency value, in Hz, to rotate around.
        Should only be set if spectrum is to be rotated.
    return_params : bool, optional, default: False
        Whether to return the parameters for the simulated spectrum.
    Returns
    -------
    freqs : 1d array
        Frequency values, in linear spacing.
    powers : 1d array
        Power values, in linear spacing.
    sim_params : SimParams
        Definition of parameters used to create the spectrum.
        Only returned if `return_params` is True.
    Notes
    -----
    Aperiodic Parameters:
    - The function for the aperiodic process to use is inferred from the provided parameters.
    - If length of 2, the 'fixed' aperiodic mode is used, if length of 3, 'knee' is used.
    Periodic Parameters:
    - The periodic component is comprised of a set of 'peaks', each of which is described as:
      * Mean (Center Frequency), height (Power), and standard deviation (Bandwidth).
      * Make sure any center frequencies you request are within the simulated frequency range.
    - The total number of parameters that need to be specified is number of peaks * 3
      * These can be specified in as all together in a flat list (ex: [10, 1, 1, 20, 0.5, 1])
      * They can also be grouped into a list of lists (ex: [[10, 1, 1], [20, 0.5, 1]])
    Rotating Power Spectra:
    - You can optionally specify a rotation frequency, such that power spectra will be
      simulated and rotated around that point to the specified aperiodic exponent.
      * This can be used so that any power spectra simulated with the same 'f_rotation'
        will relate to each other by having the specified rotation point.
    - Note that rotating power spectra changes the offset.
      * If you specify an offset value to simulate as well as 'f_rotation', the returned
        spectrum will NOT have the requested offset. It instead will have the offset
        value required to create the requested aperiodic exponent with the requested
        rotation point.
      * If you return SimParams, the recorded offset will be the calculated offset
        of the data post rotation, and not the entered value.
    - You cannot rotate power spectra simulated with a knee.
      * The procedure we use to rotate does not support spectra with a knee, and so
        setting 'f_rotation' with a knee will lead to an error.
    Examples
    --------
    Generate a power spectrum with a single peak, at 10 Hz:
    >>> freqs, powers = gen_power_spectrum([1, 50], [0, 2], [10, 0.5, 1])
    Generate a power spectrum with alpha and beta peaks:
    >>> freqs, powers = gen_power_spectrum([1, 50], [0, 2], [[10, 0.5, 1], [20, 0.5, 1]])
    Generate a power spectrum, that was rotated around a particular frequency point:
    >>> freqs, powers = gen_power_spectrum([1, 50], [None, 2], [10, 0.5, 1], f_rotation=15)
    """
    freqs = gen_freqs(freq_range, freq_res)
    if f_rotation:
        powers = gen_rotated_power_vals(freqs, aperiodic_params,
                                        check_flat(periodic_params), nlv, f_rotation)
        # The rotation changes the offset, so recalculate it's value & update params
        new_offset = compute_rotation_offset(aperiodic_params[1], f_rotation)
        aperiodic_params = [new_offset, aperiodic_params[1]]
    else:
        powers = gen_power_vals(freqs, aperiodic_params, check_flat(periodic_params), nlv)
    if return_params:
        sim_params = collect_sim_params(aperiodic_params, periodic_params, nlv)
        return freqs, powers, sim_params
    else:
        return freqs, powers 
[docs]def gen_group_power_spectra(n_spectra, freq_range, aperiodic_params, periodic_params, nlvs=0.005,
                            freq_res=0.5, f_rotation=None, return_params=False):
    """Generate a group of simulated power spectra.
    Parameters
    ----------
    n_spectra : int
        The number of power spectra to generate.
    freq_range : list of [float, float]
        Frequency range to simulate power spectra across, as [f_low, f_high], inclusive.
    aperiodic_params : list of float or generator
        Parameters for the aperiodic component of the power spectra.
    periodic_params : list of float or generator
        Parameters for the periodic component of the power spectra.
        Length of n_peaks * 3.
    nlvs : float or list of float or generator, optional, default: 0.005
        Noise level to add to generated power spectrum.
    freq_res : float, optional, default: 0.5
        Frequency resolution for the simulated power spectra.
    f_rotation : float, optional
        Frequency value, in Hz, to rotate around.
        Should only be set if spectra are to be rotated.
    return_params : bool, optional, default: False
        Whether to return the parameters for the simulated spectra.
    Returns
    -------
    freqs : 1d array
        Frequency values, in linear spacing.
    powers : 2d array
        Matrix of power values, in linear spacing, as [n_power_spectra, n_freqs].
    sim_params : list of SimParams
        Definitions of parameters used for each spectrum. Has length of n_spectra.
        Only returned if `return_params` is True.
    Notes
    -----
    Parameters options can be:
    - A single set of parameters.
      If so, these same parameters are used for all spectra.
    - A list of parameters whose length is n_spectra.
      If so, each successive parameter set is such for each successive spectrum.
    - A generator object that returns parameters for a power spectrum.
      If so, each spectrum has parameters sampled from the generator.
    Aperiodic Parameters:
    - The function for the aperiodic process to use is inferred from the provided parameters.
    - If length of 2, the 'fixed' aperiodic mode is used, if length of 3, 'knee' is used.
    Periodic Parameters:
    - The periodic component is comprised of a set of 'peaks', each of which is described as:
      * Mean (Center Frequency), height (Power), and standard deviation (Bandwidth).
      * Make sure any center frequencies you request are within the simulated frequency range.
    Rotating Power Spectra:
    - You can optionally specify a rotation frequency, such that power spectra will be
      simulated and rotated around that point to the specified aperiodic exponent.
      * This can be used so that any power spectra simulated with the same 'f_rotation'
        will relate to each other by having the specified rotation point.
    - Note that rotating power spectra changes the offset.
      * If you specify an offset value to simulate as well as 'f_rotation', the returned
        spectrum will NOT have the requested offset. It instead will have the offset
        value required to create the requested aperiodic exponent with the requested
        rotation point.
      * If you return SimParams, the recorded offset will be the calculated offset
        of the data post rotation, and not the entered value.
    - You cannot rotate power spectra simulated with a knee.
      * The procedure we use to rotate does not support spectra with a knee, and so
        setting 'f_rotation' with a knee will lead to an error.
    Examples
    --------
    Generate 2 power spectra using the same parameters:
    >>> freqs, powers = gen_group_power_spectra(2, [1, 50], [0, 2], [10, 0.5, 1])
    Generate 10 power spectra, randomly sampling possible parameters:
    >>> from fooof.sim.params import param_sampler
    >>> ap_opts = param_sampler([[0, 1.0], [0, 1.5], [0, 2]])
    >>> pe_opts = param_sampler([[], [10, 0.5, 1], [10, 0.5, 1, 20, 0.25, 1]])
    >>> freqs, powers = gen_group_power_spectra(10, [1, 50], ap_opts, pe_opts)
    Generate 5 power spectra, rotated around 20 Hz:
    >>> ap_params = [[None, 1], [None, 1.25], [None, 1.5], [None, 1.75], [None, 2]]
    >>> pe_params = [10, 0.5, 1]
    >>> freqs, powers = gen_group_power_spectra(5, [1, 50], ap_params, pe_params, f_rotation=20)
    Generate power spectra stepping across exponent values, and return parameter values:
    >>> from fooof.sim.params import Stepper, param_iter
    >>> ap_params = param_iter([0, Stepper(1, 2, 0.25)])
    >>> pe_params = [10, 0.5, 1]
    >>> freqs, powers, sps = gen_group_power_spectra(5, [1, 50], ap_params, pe_params,
    ...                                              return_params=True)
    """
    # Initialize things
    freqs = gen_freqs(freq_range, freq_res)
    powers = np.zeros([n_spectra, len(freqs)])
    sim_params = [None] * n_spectra
    # Check if inputs are generators, if not, make them into repeat generators
    ap_params = check_iter(aperiodic_params, n_spectra)
    pe_params = check_iter(periodic_params, n_spectra)
    nlvs = check_iter(nlvs, n_spectra)
    f_rots = check_iter(f_rotation, n_spectra)
    # Simulate power spectra
    for ind, ap, pe, nlv, f_rot in zip(range(n_spectra), ap_params, pe_params, nlvs, f_rots):
        if f_rotation:
            powers[ind, :] = gen_rotated_power_vals(freqs, ap, check_flat(pe), nlv, f_rot)
            aperiodic_params = [compute_rotation_offset(ap[1], f_rot), ap[1]]
        else:
            powers[ind, :] = gen_power_vals(freqs, ap, check_flat(pe), nlv)
        sim_params[ind] = collect_sim_params(ap, pe, nlv)
    if return_params:
        return freqs, powers, sim_params
    else:
        return freqs, powers 
def gen_aperiodic(freqs, aperiodic_params, aperiodic_mode=None):
    """Generate aperiodic values.
    Parameters
    ----------
    freqs : 1d array
        Frequency vector to create aperiodic component for.
    aperiodic_params : list of float
        Parameters that define the aperiodic component.
    aperiodic_mode : {'fixed', 'knee'}, optional
        Which kind of aperiodic component to generate.
        If not provided, is inferred from the parameters.
    Returns
    -------
    ap_vals : 1d array
        Aperiodic values, in log10 spacing.
    """
    if not aperiodic_mode:
        aperiodic_mode = infer_ap_func(aperiodic_params)
    ap_func = get_ap_func(aperiodic_mode)
    ap_vals = ap_func(freqs, *aperiodic_params)
    return ap_vals
def gen_periodic(freqs, periodic_params, periodic_mode='gaussian'):
    """Generate periodic values.
    Parameters
    ----------
    freqs : 1d array
        Frequency vector to create peak values for.
    periodic_params : list of float
        Parameters to create the periodic component.
    periodic_mode : {'gaussian'}, optional
        Which kind of periodic component to generate.
    Returns
    -------
    peak_vals : 1d array
        Peak values, in log10 spacing.
    """
    pe_func = get_pe_func(periodic_mode)
    pe_vals = pe_func(freqs, *periodic_params)
    return pe_vals
def gen_noise(freqs, nlv):
    """Generate noise values for a simulated power spectrum.
    Parameters
    ----------
    freqs : 1d array
        Frequency vector to create noise values for.
    nlv : float
        Noise level to generate.
    Returns
    -------
    noise_vals : 1d vector
        Noise values.
    Notes
    -----
    This approach generates noise as randomly distributed white noise.
    The 'level' of noise is controlled as the scale of the normal distribution.
    """
    noise_vals = np.random.normal(0, nlv, len(freqs))
    return noise_vals
def gen_power_vals(freqs, aperiodic_params, periodic_params, nlv):
    """Generate power values for a simulated power spectrum.
    Parameters
    ----------
    freqs : 1d array
        Frequency vector to create power values for.
    aperiodic_params : list of float
        Parameters to create the aperiodic component of the power spectrum.
    periodic_params : list of float
        Parameters to create the periodic component of the power spectrum.
    nlv : float
        Noise level to add to generated power spectrum.
    Returns
    -------
    powers : 1d vector
        Power values, in linear spacing.
    Notes
    -----
    This function should be used when simulating power spectra, as it:
    - Takes in input parameter definitions as lists, as used for simulating power spectra.
    - Returns the power spectrum in linear spacing, as is used for simulating power spectra.
    """
    ap_vals = gen_aperiodic(freqs, aperiodic_params)
    pe_vals = gen_periodic(freqs, periodic_params)
    noise = gen_noise(freqs, nlv)
    powers = np.power(10, ap_vals + pe_vals + noise)
    return powers
def gen_rotated_power_vals(freqs, aperiodic_params, periodic_params, nlv, f_rotation):
    """Generate power values for a simulated power spectrum, rotated around a given frequency.
    Parameters
    ----------
    freqs : 1d array
        Frequency vector to create power values for.
    aperiodic_params : list of float
        Parameters to create the aperiodic component of the power spectrum.
    periodic_params : list of float
        Parameters to create the periodic component of the power spectrum.
    nlv : float
        Noise level to add to generated power spectrum.
    f_rotation : float
        Frequency value, in Hz, about which rotation is applied, at which power is unchanged.
    Returns
    -------
    powers : 1d vector
        Power values, in linear spacing.
    Raises
    ------
    ValueError
        If a rotation is requested on a power spectrum with a knee, as this is not supported.
    """
    if len(aperiodic_params) == 3:
        raise ValueError('Cannot rotate power spectra generated with a knee.')
    powers = gen_power_vals(freqs, [0, 0], periodic_params, nlv)
    powers = rotate_spectrum(freqs, powers, aperiodic_params[1], f_rotation)
    return powers
def gen_model(freqs, aperiodic_params, periodic_params, return_components=False):
    """Generate a power spectrum model for a given parameter definition.
    Parameters
    ----------
    freqs : 1d array
        Frequency vector to create the model for.
    aperiodic_params : 1d array
        Parameters to create the aperiodic component of the modeled power spectrum.
    periodic_params : 2d array
        Parameters to create the periodic component of the modeled power spectrum.
    return_components : bool, optional, default: False
        Whether to also return the components of the model.
    Returns
    -------
    full_model : 1d array
        The full power spectrum model, in log10 spacing.
    pe_fit : 1d array
        The periodic component of the model, containing the peaks.
        Only returned if `return_components` is True.
    ap_fit : 1d array
        The aperiodic component of the model.
        Only returned if `return_components` is True.
    Notes
    -----
    This function should be used when computing model reconstructions, as it:
    - Takes in input parameter definitions as arrays, as used in FOOOF objects.
    - Returns the power spectrum in log10 spacing, as is used in FOOOF models.
    """
    ap_fit = gen_aperiodic(freqs, aperiodic_params)
    pe_fit = gen_periodic(freqs, np.ndarray.flatten(periodic_params))
    full_model = pe_fit + ap_fit
    if return_components:
        return full_model, pe_fit, ap_fit
    else:
        return full_model