Source code for fooof.sim.params

"""Classes & functions for managing parameters for simulating power spectra."""

import numpy as np

from fooof.core.utils import group_three, check_flat
from fooof.core.info import get_indices
from fooof.core.funcs import infer_ap_func
from fooof.core.errors import InconsistentDataError

from fooof.data import SimParams

###################################################################################################
###################################################################################################

def collect_sim_params(aperiodic_params, periodic_params, nlv):
    """Collect simulation parameters into a SimParams object.

    Parameters
    ----------
    aperiodic_params : list of float
        Parameters of the aperiodic component of the power spectrum.
    periodic_params : list of float or list of list of float
        Parameters of the periodic component of the power spectrum.
    nlv : float
        Noise level of the power spectrum.

    Returns
    -------
    SimParams
        Object containing the simulation parameters.
    """

    return SimParams(aperiodic_params.copy(),
                     sorted(group_three(check_flat(periodic_params))),
                     nlv)


[docs]def update_sim_ap_params(sim_params, delta, field=None): """Update the aperiodic parameter definition in a SimParams object. Parameters ---------- sim_params : SimParams Object storing the current parameter definition. delta : float or list of float Value(s) by which to update the parameters. field : {'offset', 'knee', 'exponent'} or list of string Field of the aperiodic parameter(s) to update. Returns ------- new_sim_params : SimParams Updated object storing the new parameter definition. Raises ------ InconsistentDataError If the input parameters and update values are inconsistent. """ # Grab the aperiodic parameters that need updating ap_params = sim_params.aperiodic_params.copy() # If field isn't specified, check shapes line up and update across parameters if not field: if not len(ap_params) == len(delta): raise InconsistentDataError("The number of items to update and " "number of new values is inconsistent.") ap_params = [param + update for param, update in zip(ap_params, delta)] # If labels are given, update deltas according to their labels else: # This loop checks & casts to list, to work for single or multiple passed in values for cur_field, cur_delta in zip(list([field]) if not isinstance(field, list) else field, list([delta]) if not isinstance(delta, list) else delta): data_ind = get_indices(infer_ap_func(ap_params))[cur_field] ap_params[data_ind] = ap_params[data_ind] + cur_delta # Replace parameters. Note that this copies a new object, as data objects are immutable new_sim_params = sim_params._replace(aperiodic_params=ap_params) return new_sim_params
[docs]class Stepper(): """Object for stepping across parameter values. Parameters ---------- start : float Start value to iterate from. stop : float End value to iterate to. step : float Increment of each iteration. Attributes ---------- len : int Length of generator range. data : iterator Set of specified parameters to iterate across. Examples -------- Define a stepper object for center frequency values for an alpha peak: >>> alpha_cf_steps = Stepper(8, 12.5, 0.5) """
[docs] def __init__(self, start, stop, step): """Initialize a Stepper object.""" self._check_values(start, stop, step) self.start = start self.stop = stop self.step = step self.len = round((stop-start)/step) self.data = iter(np.arange(start, stop, step))
def __len__(self): return self.len def __next__(self): return round(next(self.data), 4) def __iter__(self): return self.data @staticmethod def _check_values(start, stop, step): """Checks if provided values are valid. Parameters ---------- start, stop, step : float Definition of the parameter range to iterate over. Raises ------ ValueError If the given values for defining the iteration range are inconsistent. """ if any(ii < 0 for ii in [start, stop, step]): raise ValueError("Inputs 'start', 'stop', and 'step' should all be positive values.") if not start < stop: raise ValueError("Input 'start' should be less than 'stop'.") if not step < (stop - start): raise ValueError("Input 'step' is too large given values for 'start' and 'stop'.")
[docs]def param_iter(params): """Create a generator to iterate across parameter ranges. Parameters ---------- params : list of floats and Stepper Parameters over which to iterate, including a Stepper object. The Stepper defines the iterated parameter and its range. Floats define the other parameters, that will be held constant. Yields ------ list of floats Next generated list of parameters. Raises ------ ValueError If the number of Stepper objects given is greater than one. Examples -------- Iterate across exponent values from 1 to 2, in steps of 0.1: >>> aps = param_iter([Stepper(1, 2, 0.1), 1]) Iterate over center frequency values from 8 to 12 in increments of 0.25: >>> peaks = param_iter([Stepper(8, 12, .25), 0.5, 1]) """ # If input is a list of lists, check each element, and flatten if needed if isinstance(params[0], list): params = [item for sublist in params for item in sublist] # Finds where Stepper object is. If there is more than one, raise an error iter_ind = 0 num_iters = 0 for cur_ind, param in enumerate(params): if isinstance(param, Stepper): num_iters += 1 iter_ind = cur_ind if num_iters > 1: raise ValueError("Iteration is only supported across one parameter at a time.") # Generate and yield next set of parameters gen = params[iter_ind] while True: try: params[iter_ind] = next(gen) yield params except StopIteration: return
[docs]def param_sampler(params, probs=None): """Create a generator to sample randomly from possible parameters. Parameters ---------- params : list of lists or list of float Possible parameter values. probs : list of float, optional Probabilities with which to sample each parameter option. If None, each parameter option is sampled uniformly. Yields ------ list of float A randomly sampled set of parameters. Examples -------- Sample from aperiodic definitions with high and low exponents, with 50% probability of each: >>> aps = param_sampler([[1, 1], [2, 1]], probs=[0.5, 0.5]) Sample from peak definitions of alpha or alpha & beta, with 75% change of sampling just alpha: >>> peaks = param_sampler([[10, 1, 1], [[10, 1, 1], [20, 0.5, 1]]], probs=[0.75, 0.25]) """ # If input is a list of lists, check each element, and flatten if needed if isinstance(params[0], list): params = [check_flat(lst) for lst in params] # In order to use numpy's choice, with probabilities, choices are made on indices # This is because the params can be a messy-sized list, that numpy choice does not like inds = np.array(range(len(params))) # Check that length of options is same as length of probs, if provided if np.any(probs): if len(inds) != len(probs): raise ValueError("The number of options must match the number of probabilities.") # While loop allows the generator to be called an arbitrary number of times while True: yield params[np.random.choice(inds, p=probs)]
[docs]def param_jitter(params, jitters): """Create a generator that adds jitter to parameter definitions. Parameters ---------- params : list of lists or list of float Possible parameter values. jitters : list of lists or list of float The scale of the jitter for each parameter. Must be the same shape and organization as `params`. Yields ------ list of float A jittered set of parameters. Notes ----- - Jitter is added as random samples from a normal (gaussian) distribution. - The jitter specified corresponds to the standard deviation of the normal distribution. - For any parameter for which there should be no jitter, set the corresponding value to zero. Examples -------- Jitter aperiodic definitions, for offset and exponent, each with the same amount of jitter: >>> aps = param_jitter([1, 1], [0.1, 0.1]) Jitter center frequency of peak definitions, by different amounts for alpha & beta: >>> peaks = param_jitter([[10, 1, 1], [20, 1, 1]], [[0.1, 0, 0], [0.5, 0, 0]]) """ # Check if inputs are list of lists, and flatten if so if isinstance(params[0], list): params = check_flat(params) jitters = check_flat(jitters) # While loop allows the generator to be called an arbitrary number of times while True: out_params = [None] * len(params) for ind, (param, jitter) in enumerate(zip(params, jitters)): out_params[ind] = param + np.random.normal(0, jitter) yield out_params